
 555

!

!"#$%&'!(%)*'+$,-'./)%01(234)'526$%)66

7%$,$",$8)6

Paul Benjamin Lowry
Brigham Young University, USA

Akshay Grover
Brigham Young University, USA

Chris Madsen
Brigham Young University, USA

Jeff Larkin
Brigham Young University, USA

William Robins
Brigham Young University, USA

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Open-source software (OSS) is software that can be
used freely in the public domain but is often copy-
righted by the original authors under an open-source
license such as the GNU General Public License
(GPL). Given its free nature, one might believe that
OSS is inherently inferior to proprietary software, yet
this often is not the case. Many OSS applications are
superior or on par with their proprietary competitors
(e.g., MySQL, Apache Server, Linux, and Star Of-
fice). OSS is a potentially disruptive technology
(Christensen, 1997) because it is often cheaper, more
reliable, simpler, and more convenient than propri-
etary software.

Because OSS can be of high quality and capable
of performing mission-critical tasks, it is becoming
common in industry; the majority of Web sites, for
example, use Apache as the Web server. The deploy-
ment of OSS is proving to be a productive way to
counter the licensing fees charged by proprietary
software companies. An organized approach to dis-
tributing cost-effective OSS products is intensifying
as companies such as RedHat and IBM co-brand OSS
products to establish market presence.

From a business perspective, the entire OSS move-
ment has been strategically anti-intuitive because it is
based on software developers freely sharing source

code—an act that flies in the face of traditional
proprietary models. This movement raises two ques-
tions this article aims to address: (1) why would
individuals write software and share it freely? and (2)
how can software firms make money from OSS?
Before fully addressing these questions, this article
examines the historical development of OSS.

OSS HISTORY

A strategic irony of the software industry is that its
foundation rests primarily on OSS principles. Soft-
ware development in the 1960s and 1970s was steered
primarily by government and academia. Software
developers working in the field at the time considered
it a normal part of their research culture to exchange,
modify, and build on one another’s software (Von
Krogh, 2003). Richard Stallman, a professor and
programmer at MIT, was a strong advocate and
contributor to this culture of open, collaborative
software development. Despite Professor Stallman’s
influence, MIT eventually stopped exchanging
sourcecode with other universities to increase its
research funding through proprietary software licens-
ing. Offended by MIT’s decision to limit code sharing,
Professor Stallman founded the Free Software Foun-
dation in 1985 and developed the General Public

556

Making Money with Open-Source Business Initiatives

License (GPL) to preserve free code sharing
(Bretthauer, 2002).

In the formative years of the software industry,
Stallman’s free software movement grew slowly; in
the early 1990s, however, the concept of code sharing
grew more rapidly for a couple of reasons. First, “free
software” was renamed “OSS,” a name that spread
rapidly throughout the code-sharing community
(Fitzgerald & Feller, 2001). Second, the OSS move-
ment received a boost from the advent of the World
Wide Web (WWW). The Web provided an opportu-
nity for Internet users to quickly and conveniently
share their code.

WHY DEVELOPERS WRITE OSS

The majority of OSS software developers fall into one
of the following three categories: freelancers, soft-
ware enthusiasts, or professionals. Freelancers enjoy
the challenges associated with developing OSS and
providing services to the OSS community to further
their own careers. When freelancers create modules
of code, they often include their contact information
inside the modules (Lerner & Tirole, 2002). This
allows businesses to contact the developers to request
their future services.

Software enthusiasts are people who contribute to
OSS simply out of the joy and challenge of doing so,
with little regard for professional advancement. En-
thusiasts are often university students who want to
participate in the development of free software and
who receive personal gratification from participating
in real-world OSS development projects and gaining
the respect of the OSS community.

Even though OSS is “free” software, many com-
panies hire professional developers to work on im-
proving OSS code. RedHat, a Linux support com-
pany, hires developers to fix bugs in OSS code and to
create new applications (Lerner & Tirole, 2002).
Other companies hire OSS developers because their
systems run OSS applications and they need develop-
ers to customize the code for specific business pur-
poses. Table 1 summarizes the different motivations
for joining OSS projects and shows them on a
spectrum of intrinsic and extrinsic motivations.

SOFTWARE DEVELOPMENT
ECONOMICS

Proprietary software

The strategic motivation behind the creation of pro-
prietary software is to set up high switching costs for
consumers. For such companies their developers’
resulting source code becomes the company’s intel-
lectual property and an unshared key company asset.
Once customers purchase proprietary software, they
must pay for updates continually to keep the software
current, and often to receive full customer support
(Delong & Froomkin, 2000). Most customers will pay
these fees because of the lock in that occurs from the
often costly prohibitive tradeoff of implementing a
completely new system.

Microsoft is an example of a company that has
succeeded in proprietary software, largely because
they have a focused strategy of selling complemen-
tary products and services to their installed base of
Windows users (Shapiro & Varian, 1998): Offering

Table 1. Developer motivations

Intrinsic Extrinsic

Enthusiast Freelancer Professional

• Learn

•Earn respect

•Challenge of
developing code

•Receive future job
 opportunities

• Programming
income

•Customize OSS

 557

Making Money with Open-Source Business Initiatives

!

complementary goods that run on Windows (e.g.,
Office) increases profitability and successfully en-
hances the buyer relationship while encouraging cus-
tomer entrenchment.

Proprietary software development is rigidly struc-
tured. Development begins with an end product in
mind, and the new product often integrates with other
products the company is currently selling. Project
leaders create development plans, set deadlines, and
coordinate teams to develop modules of the new
software product. Successful proprietary software
companies are also able to develop new technologies
in exceptionally short time frames and to place their
products in the market faster than their competitors.
Products that meet the strict demands of end users
succeed and increase customer satisfaction.

The downside of proprietary software develop-
ment is that it comes at a tremendous internal cost
(Lederer & Prasad, 1993); meanwhile, the industry is
experiencing increasing pressures to decrease costs.
Companies must invest heavily in research and devel-
opment (R&D), human capital, information technol-
ogy, marketing, brand development, and physical
manufacturing of the products. They must continually
innovate and develop updated versions of existing
products, or create entirely new products. To compen-
sate for these costs, proprietary software companies
have high-priced products. Some software costs are so
high that many businesses question whether the soft-
ware is worth it.

OSS

The economics of OSS differ significantly in that
OSS is developed in a loose marketplace structure.
The development process begins when a developer
presents an idea or identifies a need for an applica-
tion with specific functionality (Johnson, 2002).
OSS software development typically has a central
person or body that selects a subset of developed
code for an “official” release and makes it widely
available for distribution. OSS is built by potentially
large numbers of volunteers in combination with
for-profit participants (Von Krogh, 2003). Often no
system-level design or even detailed design exists.
Developers work in arbitrary locations, rarely or
never meet face to face, and often coordinate their
activity through e-mail and bulletin boards. As
participants make changes to the original applica-
tion, the central person or body leading the develop-
ment selects code changes, incorporates them into
the application, and officially releases the next
version of the application. Table 2 compares OSS to
proprietary development.

OSS BUSINESS MODELS

A business model is a method whereby a firm builds
and uses resources to provide a value-added propo-
sition to potential customers (Afuah & Tucci, 2000).

Table 2. OSS development vs. proprietary development

 OSS Proprietary Software
Similarities

Differences

Revenue is generated from supporting software, creating new applications for software, and
certifying software users

Building brand name and reputation increases software use

Code is costly to create internally Code is developed for little internal cost

People are locked in using specific software
and have to pay for updates

Updates are free and users are allowed
flexibility in using them

Users pay license fees to use the software People use program without paying any
license fees.

Source code is kept in company Source code is open for public use.

Developers are paid to program code Code developed outside of company for free

558

Making Money with Open-Source Business Initiatives

OSS business models are based on providing varied
services that cater to cost-sensitive market seg-
ments and provide value to the end user by keeping
the total cost of ownership as low as possible
(Hecker, 1999). OSS-based companies must pro-
vide value-added services that are in demand, and
they must provide these services at cost-sensitive
levels. OSS is a strategic threat to proprietary soft-
ware, because one of the most effective ways to
compete in lock-in markets is to “change the game”
by expanding the set of complementary products
beyond those offered by rivals (Shapiro & Varian,
1998). OSS proponents are trying to “change the
game” with new applications of the following business
models (Castelluccio, 2000): support sellers, loss lead-
ers, code developers, accessorizers, certifiers, and
tracking service providers.

Support Sellers

Support sellers provide OSS to customers for free,
except for a nominal packaging and shipping fee, and
instead charge for training and consulting services.
They also maintain the distribution channel and brand-
ing of a given OSS package. They provide value by
helping corporations and individuals install, use, and
maintain OSS applications. An example of a support
seller is RedHat, which provides reliable Linux solu-
tions.

To offer such services, support sellers must antici-
pate and provide services that will meet the needs of
businesses using OSS. To offer reliable and useful
consulting services, support sellers must invest heavily
in understanding the currently available OSS pack-
ages and developing models to predict how these OSS
applications will evolve in the future (Krishnamurthy,
2003).

This model has strengths in meeting the needs for
outsourcing required IT services, which is the current
market trend (Lung Hui & Yan Tam, 2002). OSS
provides companies an opportunity to reduce licens-
ing costs by allowing companies to outsource the
required IT support to support sellers. Likewise, the
marketplace structure of OSS development adds
significant uncertainty to the future of OSS applica-
tions. Risk-adverse companies often do not want to
invest in specialized human capital, and support
sellers help mitigate these risks.

One drawback of this model is that consulting
companies often fall prey to economic downturns,
during which potential clients reduce outsourcing to
consultants. This cycle is compounded for the soft-
ware industry, since a poor economy results in cost
cutting and an eventual reduction in IT spending.

Loss leaders

Loss-leader companies write and license proprietary
software that can run on OSS platforms (Castelluccio,
2000). An example of a loss leader is Netscape, which
gives away its basic Web-browser software but then
provides proprietary software or hardware to ensure
compatibility and allow expanded functionality. The
loss-leader business model adds value by providing
applications to companies that have partially inte-
grated OSS with their systems (Hecker, 1999). Com-
panies often need specific business applications that
are unavailable in the OSS community, or they desire
proprietary applications but wish to avoid high plat-
form-licensing costs.

To leverage the integration of OSS with propri-
etary software, loss leaders need to assemble a team
of highly skilled developers, create an IT infrastruc-
ture, and develop licensable applications. The major
costs of this business model arise from payroll ex-
penses for a development team, R&D costs, market-
ing, and, to a lesser extent, patenting and manufactur-
ing.

This model’s strength is that it provides a solution
for the lack of business applications circulating in the
OSS community. The loss leader model fills the gap
between simpler available OSS applications, such as
word processors, and more complex applications that
are unavailable in the OSS community.

A weakness of this model is the risk of
disintermediation. As time passes and OSS coding
continues to grow and expand, more robust and
complex applications will be developed. However, the
developers of these applications will have to cope with
the speed and efficiency of proprietary software
development.

Code Developers

The code development model addresses some of the
limitations of the loss-leader model. Code develop-
ment companies generate service revenue through

 559

Making Money with Open-Source Business Initiatives

!

on-demand development of OSS. If a firm cannot find
an OSS package that meets its needs for an inventory
management system, for example, the firm could
contract with a code development company to the
basic application (Johnson, 2002). The code develop-
ment company could then distribute this application
to the OSS community and act as the development
project’s leader. The code development company
would track the changes made to the basic source
code by the OSS community and integrate those
changes into its product. The company would periodi-
cally send its customers product updates based on
changes accepted from the OSS community.

The necessary assets and associated costs re-
quired by this model are similar to those in the
proprietary software model, including a team of
programmers, IT infrastructure, and marketing. How-
ever, the code developer needs to develop only a basic
application. Once the basic software is developed, the
OSS community provides further add-ons and new
features (Johnson, 2002), which decrease the R&D
costs for the company acting as project leader. Yet the
code development team needs to have the necessary
IT infrastructure to lead the OSS community in the
application’s evolution, incorporate new code, and
resubmit new versions to its customers.

This model’s strength is its longevity. The code
development model overcomes the risk of
disintermediation by basing its revenue generation on
initiating OSS applications and maintaining leadership
over their evolution; it does not focus on privatizing
the development and licensing of applications.

This model’s weakness is the risk of creating an
application of limited interest to the OSS community.
A possible solution to this problem would be an offer
from the company leading the development process to
reward freelance developers for exceptional additions
to the application’s original code.

Accessorizers

Accessorizers companies add value by selling prod-
ucts related to OSS. Accessorizers provide a variety
of different value-added services, from installing
Linux OS on their clients’ hardware to writing manu-
als and tutorials (Hecker, 1999; Krishnamurthy, 2003).
For example, O’Reilly & Associates, Inc. writes
manuals for OSS and produces downloadable copies
of Perl, a programming language.

One strength of this model is that it provides the
new manuals and tutorials that the constantly chang-
ing nature of the OSS market requires. Another
strength is its self-perpetuating nature: as more
manuals and tutorials are produced, more people will
write and use OSS applications, increasing the need
for more manuals and tutorials.

This models’ weakness is the difficulty of staying
current with the many trends with the OSS commu-
nity. This difficulty creates the risk of investing in the
wrong products or producing too much inventory that
is quickly outdated.

Certifiers

Certifiers establish methods to train and certify stu-
dents or professionals in an application. Certificate
companies like CompTIA generate revenue through
training programs, course materials, examination fees,
and certification fees. These programs provide value
to the individuals enrolled in the certification pro-
grams and businesses looking for specific skills
(Krishnamurthy, 2003). Certification helps the OSS
industry by creating benchmarks, expectations, and
standards employers can use to evaluate and hire
employees based on specific skill sets.

Certification has long-term profit potential since
most certification programs require recertification
every few years due to continuing education require-
ments. Businesses value certification programs be-
cause they are a cost-effective way to train employees
on new technologies. Certifiers, who achieve first-
mover advantage, become trendsetters for the entire
industry, increasing barriers to entry into the certifi-
cation arena.

One downside of this model is the significant
startup costs. Certifiers need to find qualified indi-
viduals to create manuals, teach seminars, and write
tests. Certifiers must also survey businesses to discern
which parts of specific applications are most impor-
tant, and which areas need the greatest focus during
training. Certifiers also need to gain substantial cred-
ibility through marketing and critical mass or their
tests have little value. Increasing company name
recognition and building a reputation in the certifica-
tion arena can be an expensive and long process.

This model also faces the threat of
disintermediation. Historically, certification programs
have evolved into not-for-profit organizations, such

560

Making Money with Open-Source Business Initiatives

as the AICPA in accounting, or the ISO 9000
certification in operations. The threat of obsoles-
cence is another major weakness. In the 1970s,
FORTRAN or COBOL certification may have been
important (Castelluccio, 2000), but they have since
become obsolete. Certifiers specializing in certain
applications must be constantly aware of the OSS
innovation frontier and adjust their certification op-
tions appropriately.

Tracking Service Providers

The tracking-services business model generates
revenue through the sale of services dedicated to
tracking and updating OSS applications. For ex-
ample, many companies have embraced Linux to cut
costs; however, many of these same companies
have found it difficult to maintain and upgrade Linux
because of their lack of knowledge and resources.
Tracking-services companies, like Sourceforge.net
and FreshMeat.net, sell services to track recent
additions, define source code alternatives, and facili-
tate easy transition of code to their customers’
systems.

A strength of this model is its ability to keep costs
low by automating the majority of the work involved
in tracking while still charging substantial subscription
and download fees. However, these services must
have Web-based interfaces with user-friendly down-
load options, and they also must develop human and
technological capabilities that find recent updates and
distinguish between available alternatives.

A weakness of this model is low barriers to entry.
This information-services model can be replicated
with a simple Web interface and by spending time on
OSS discussion boards and postings, creating the
possibility of such services becoming commoditized.
Table 3 summarizes some of the differences between
the OSS business models.

CONCLUSION

The market battle between OSS and proprietary
software has just begun. This battle could be termed
a battle of complementary goods and pricing. For
example, the strategies between Microsoft and RedHat
are similar in that they both need a large, established
user base that is locked in and has access to a large
array of complementary goods and services. The key
differences in their strategies are in their software
development process, software distribution, intellec-
tual property ownership, and pricing of core products
and software. It will be increasingly important for
OSS companies to track the competitive response of
proprietary companies in combating the increasing
presence of OSS.

Moreover, the OSS movement has begun to make
inroads into the governments in China, Brazil, Austra-
lia, India, and Europe. As whole governments adopt
OSS the balance of power can shift away from
proprietary providers. This also provides the oppor-
tunity to develop a sustainable business model that
caters only to the government sector. Similarly, for-

Table 3. OSS models

Business Model Assets Costs Revenue Model

Support Sellers Human capital, supporting
infrastructure, contracts

Payroll, IT, marketing and
brand development

Training, consulting

Loss Leaders Human capital, supporting
infrastructure, software

Payroll, IT cost,
marketing and brand
development, R&D,
software manufacturing

Licenses

Accessorizers Human capital, supporting
infrastructure

Payroll, printing material
machines, training,
software

Book Sales

Code developers Human capital, software -
technology tracking,
database

Payroll, IT, marketing
(Corporations), marketing
(Freelancers)

Corporations that pay for
service

Certifiers Human capital, IT,
Certification program

Certification program
development, payroll

Tests, certificates

Tracking-service
providers

Human capital, Software-
technology tracking,
Databases

Payroll, IT, marketing
(Corporations)

Corporations that pay for
service

 561

Making Money with Open-Source Business Initiatives

!

mulating business models for corporations and edu-
cational institutions may be another fruitful opportu-
nity.

The recent government regulations associated
with the Sarbanes-Oxley Act and other financial-
reporting legislation are important trends. These regu-
lations require significant research in the area of
internal control reporting on OSS applications. It is
likely the collaborative and less proprietary nature of
OSS could help with this reporting. If this reporting
can be done with more assurance than provided by
proprietary applications, OSS providers can gain
further advantage.

REFERENCES

Afuah, A. & Tucci, C. (2000). Internet business
models and strategies: Text and cases. McGraw-Hill
Higher Education.

Bretthauer, D. (2002). Open source software: A
history. Information Technology & Libraries, 21(1),
3-10.

Castelluccio, M. (2000). Can the enterprise run on
free software? Strategic Finance, 81(9), 50-55.

Christensen, C.M. (1997). The innovator’s dilemma:
When new technologies cause great firms to fail.
Harvard Business School Press.

Delong, J.B. & Froomkin, A.M. (2000). Beating
Microsoft at its own game. Harvard Business Re-
view, 78(1), 159-164.

Fitzgerald, B. & Feller, J. (2001). Guest editorial on
open source software: Investigating the software
engineering, psychosocial and economic issues. In-
formation Systems Journal, 11(4), 273-276.

Hecker, F. (1999). Setting up shop: The business of
open-source software. IEEE Software, 16(1), 45-51.

Johnson, J.P. (2002). Open source software: Private
provision of a public good. Journal of Economics &
Management Strategy, 11(4), 637-662.

Krishnamurthy, S. (2003). A managerial overview
of open source software. Business Horizons, 46(5),
47-56.

Lederer, A.L. & Prasad, J. (1993). Information
systems software cost estimating: A current assess-
ment. Journal of Information Technology, 8(1), 22-
33.

Lerner, J. & Tirole, J. (2002). Some simple econom-
ics of open source. Journal of Industrial Econom-
ics, 50(2), 197-234.

Lung Hui, K. & Yan Tam, K. (2002). Software
functionality: A game theoretic analysis. Journal of
Management Information Systems (JMIS), 19(1),
151-184.

MacCormack, A. (2001). Product-development prac-
tices that work: How Internet companies build soft-
ware. MIT Sloan Management Review, 42(2), 75-84.

Shapiro, C. & Varian, H.R. (1998). Information
rules: A strategic guide to the network economy.
Harvard Business School Press.

Von Krogh, G. (2003). Open-source software devel-
opment. MIT Sloan Management Review, 44(3), 14-
18.

KEY TERMS

Copyright: A legal term describing rights given to
creators for their literary and artistic works. See
World Intellectual Property Organization at
www.wipo.int/about-ip/en/copyright.html.

General Public License (GPL): License de-
signed so that people can freely (or for a charge)
distribute copies of free software, receive the source
code, change the source code, and use portions of the
source code to create new free programs.

GNU: GNU is a recursive acronym for “GNU’s
Not Unix.” The GNU Project was launched in 1984
to develop a free Unix-like operating system. See
www.gnu.org/.

Open-source Software (OSS): Software that
can be freely used in the public domain, but is often
copyrighted by the original authors under an open-
source license such as the GNU GPL. See the Open
Source Initiative at www.opensource.org/docs/
definition_plain.php.

